Name \qquad

TRUE/FALSE. Write ' T ' if the statement is true and ' F ' if the statement is false.

1) Digital data can be processed and transmitted more efficiently and reliably than analog information.
2) The decimal number system uses nine different digits.
3) The binary number system uses just two digits.
4) When the inputs to a 2-input AND gate are both HIGH, the output is HIGH.
5) When the inputs to a 2 - input AND gate are both LOW, the output is LOW.
6) Boolean multiplication is symbolized by $\mathrm{A}+\mathrm{B}$.
7) In Boolean algebra, $1 \cdot 0=0$.
8) This circuit is an example of the implementation of AND- OR- INVERT logic.

9) The Karnaugh map below represents the correct implementation of the expression, $X=A C D+$
10) $A B(C D+B C)$.

$\overline{\mathrm{C}} \overline{\mathrm{D}} \overline{\mathrm{C}} \mathrm{DCDC} \overline{\mathrm{D}}$				
$\bar{A} \bar{B}$	0	0	0	0
$\bar{A} B$	0	0	1	1
AB	0	0	0	1
A \bar{B}	0	0	0	1

10) The waveforms are correct for the logic circuit shown.
11) \qquad

12) The look- ahead- carry adder is slower than the ripple- carry adder because it requires additional logic circuits.
13) \qquad
14) \qquad
15) A mux basically reverses the function of a demux.
16) \qquad

Figure 4-1
14) For the circuit in Figure $4-1, X=0$ whenever $A=0$, regardless of the levels applied to inputs B and C.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

15) The largest single digit in the decimal number system is \qquad .
A) 9
B) ∞
C) 1
D) 10
16) In the decimal value 4256 , the weight of the numeral 2 is \qquad .
17) \qquad
A) 10^{3}
B) 10×2^{2}
C) 10^{2}
D) 200
18) How many binary digits are required to count to decimal 100 ?
A) 7
B) 3
C) 2
D) 100
19) Decimal 42 is equivalent to binary \qquad -
20) \qquad
21) \qquad
22) \qquad
23) \qquad
A) 01000010
B) 52
C) 101010
D) 2 A
24) In binary systems the sign of a number is indicated by \qquad -. \qquad
25) \qquad
A) both numbers have the same sign
B) both numbers have the same magnitude
C) one number is negative and the other is positive
D) the second number is much greater than the first
26) This is the truth table for $a(n)$ \qquad .

A	B	X
0	0	1
0	1	1
1	0	1
1	1	0

A) OR gate
B) AND gate
C) NOR gate
D) NAND gate
22) Which of these truth tables represents the Exclusive- NOR gate?

A	B	X
0	0	1
0	1	0
1	0	0
1	1	1

(A)

A	B	X
0	0	1
0	1	1
1	0	1
1	1	0

A	B	X
0	0	0
0	1	1
1	0	1
1	1	0

A	B	X
0	0	1
0	1	0
1	0	0
1	1	0

(C)
(D)
A) (A)
B) (B)
C) (C)
D) (D)
23) This is the timing diagram for a 2 - input \qquad gate.

A) AND
B) NAND
C) OR
D) Exclusive- OR
24) The difference between a PLA and a PAL is \qquad -.
24) \qquad
A) the PAL has more possible product terms than the PLA
B) the PLA has a programmable OR plane and a programmable AND plane while the PAL only has a programmable AND plane
C) the PAL has a programmable OR plane and a programmable AND plane while the PLA only has a programmable AND plane
D) PALs and PLAs are the same thing.
25) The expression for a 3-input NOR gate is \qquad .
A) $\overline{A+B+C}$
B) $A B / C$
C) $A \cdot B \cdot C$
D) $\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}$
26) Which of the examples below expresses the associative law of addition?
A) $A+(B+C)=A+(B C)$
B) $A(B C)=(A B)+C$
C) $A B C=A+B+C$
D) $A+(B+C)=(A+B)+C$
27) Which of the examples below expresses the distributive law?
A) $(A+B)+C=A+(B+C)$
B) $\mathrm{A}(\mathrm{BC})=(\mathrm{AB})+\mathrm{C}$
C) $A(B+C)=A B+A C$
D) $A+(B+C)=A B+A C$
28) Which of the following is a form of DeMorgan's theorem?
A) $\overline{X+Y}=\bar{X}+\bar{Y}$
B) $\overline{X Y}=\bar{X}+\bar{Y}$
C) $X(1)=X$
D) $X+0=0$
29) Which of the following expressions is in the sum- of-products form?
A) $(A+B)(C+D)$
B) $(\mathrm{AB})(\mathrm{CD})$
C) $A B+C D$
D) $A B(C D)$
30) Which of the following expressions is in the product- of sums form?
A) $\mathrm{AB}(\mathrm{CD})$
B) $A B+C D$
C) $(A+B)(C+D)$
D) $(\mathrm{AB})(\mathrm{CD})$
31) Which of the circuits below is equivalent to the Reference Circuit?

(B)

(C)
A) Figure (A)
B) Figure (B)
C) Figure (C)
D) Figure (D)
26) \qquad
27) \qquad
28) \qquad
29) \qquad
30) \qquad
31) \qquad
)
25) \qquad
32) Which statement below best describes a Karnaugh map?
A) The Karnaugh map eliminates the need for using NAND and NOR gates.
B) A Karnaugh map can be used to replace Boolean rules.
C) Variable complements can be eliminated by using Karnaugh maps.
D) Karnaugh maps provide a cookbook approach to simplifying Boolean expressions.
33) Occasionally, a particular logic expression will be of no consequence in the operation of a circuit, such as in a BCD- to- decimal converter. These result in \qquad terms in the K-map and can be treated as either \qquad or \qquad in order to \qquad the resulting term.
A) duplicate, $1 \mathrm{~s}, 0 \mathrm{~s}$, verify
B) spurious, ANDs, ORs, eliminate
C) don't care, 1 s , 0s, simplify
D) spurious, $1 \mathrm{~s}, 0 \mathrm{~s}$, simplify
34) Which figure is the equivalent of the Reference Circuit?

(A)

(B)

(D)
A) Figure (A)
B) Figure (B)
C) Figure (C)
D) Figure (D)

Figure 5-1
35) What type of logic circuit is represented by Figure 5-1?
35)
D) XNAND

Figure 5-2
36) A correct logic expression for Figure 5-2 is \qquad .
A) $X=A B \bar{C}(\bar{C} B D)$
B) $X=(\overline{\mathrm{A}} B)(\mathrm{AC}+\overline{\mathrm{C}} \mathrm{D})$
C) $X=(\overline{\mathrm{A}} \mathrm{B})(\mathrm{A} \bar{C} C D)$
D) $X=\bar{A} B C+A \bar{C} D$
36) \qquad
37) \qquad
A) is used in all the countries of the world
B) can be found in almost all digital circuits
C) can be used to build all the other types of gates
D) was the first gate to be integrated
38) Which circuit is the sum- of- products equivalent of the Reference Circuit?
38) \qquad

A) Figure(A)
B) Figure (B)
C) Figure (C)
D) Figure (D)

Figure 5-4
39) Which circuit in Figure 5-4 represents the NOR implementation of an OR gate?
A) Figure (A)
B) Figure (B)
C) Figure (C)
D) Figure (D)
40) Which circuit in Figure 5-4 represents the NOR implementation of an AND gate?
A) Figure (A)
B) Figure (B)
C) Figure (C)
D) Figure (D)
41) Which circuit in Figure 5-4 represents the NOR implementation of an inverter?
A) Figure (A)
B) Figure (B)
C) Figure (C)
D) Figure (D)
42) The carry output of a half- adder circuit can be expressed as \qquad .
40) \qquad
41) \qquad
42) \qquad
A) $C_{\text {out }}=A+B$
B) $\mathrm{C}_{\text {out }}=\mathrm{A} \oplus \mathrm{B}$
C) $\mathrm{C}_{\text {out }}=\mathrm{AB}$
D) None of these
43) The expression $A \oplus B$ represents \qquad -
43) \qquad
A) The summing output of a half- adder
B) The summing output of a full- adder
C) The carry output of a full- adder
D) The carry output of a half-adder

Figure 6-1

44) The symbol in Figure 6-1 represents a(n) \qquad .
A) Half-adder
B) Full- adder
C) AND function
D) PLD
45) Referring to the symbol in Figure 6-1, which set of outputs is very unlikely to ever occur?
\qquad
46)

A) $\Sigma=1, C_{\text {out }}=0$
B) $\Sigma=0, C_{\text {out }}=0$
C) $\Sigma=1, C_{\text {out }}=1$
D) $\Sigma=0, C_{\text {out }}=1$
46) What is the major difference between half- adders and full-adders?
46) \qquad
A) Full- adders can handle double digit numbers.
B) Half- adders can only handle single digit numbers.
C) Full- adders have a carry input capability.
D) Nothing basically; full- adders are made up of two half- adders.
47) Which of the following is correct for full- adders? \qquad
A) Full- adders are used to make half- adders.
B) Full- adders are limited to two inputs, since there are only two binary digits.
C) Full- adders have the capability of directly adding decimal numbers.
D) In a parallel full-adder, the first stage may be a half- adder.
48) The expression $(A \oplus B) \oplus C_{\text {in }}$ represents \qquad .
48) \qquad
B) The summing output of a half- adder
A) The carry output of a full- adder
D) The summing output of a full-adder
49) The expression $A B+(A \oplus B) C_{\text {in }}$ represents \qquad .
49)
A) The summing output of a full-adder
B) The carry output of a full- adder
C) The carry output of a half- adder
D) The summing output of a half- adder

Figure 6-2
50) Refer to the symbol in Figure 6-2. What are the output when $\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}_{\mathrm{in}}=1$?
50)
A) $\Sigma=1, C_{\text {out }}=1$
B) $\Sigma=1, \mathrm{C}_{\text {out }}=0$
C) $\Sigma=0, C_{\text {out }}=1$
D) $\Sigma=0, C_{\text {out }}=0$

Figure 6-3
51) The output of the decoder in Figure 6-3 will be 1 only when \qquad
A) $\mathrm{A}=0, \mathrm{~B}=0, \mathrm{C}=0, \mathrm{D}=0$
B) $\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=1, \mathrm{D}=1$
C) $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=1, \mathrm{D}=0$
D) $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=0, \mathrm{D}=1$
52) The circuit below is most likely a \qquad . \qquad

A) demultiplexer
B) full- adder
C) multiplexer
D) comparator
53) A multiplexer with four select, or address, lines can select one of \qquad inputs.
A) 7
B) 3
C) 15
D) 16
\qquad .
54) \qquad

A) full-adder
B) multiplexer
C) demultiplexer
D) comparator

