TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false.

- 1) Digital data can be processed and transmitted more efficiently and reliably than analog information.
- 1) _____

2) The decimal number system uses nine different digits.

2)

3) The binary number system uses just two digits.

4) When the inputs to a 2-input AND gate are both HIGH, the output is HIGH.

5) When the inputs to a 2-input AND gate are both LOW, the output is LOW.

6) Boolean multiplication is symbolized by A + B.

6) _____

7) In Boolean algebra, $1 \cdot 0 = 0$.

7) _____

8) This circuit is an example of the implementation of AND-OR-INVERT logic.

8) _____

- 9) The Karnaugh map below represents the correct implementation of the expression, X = ACD + AB(CD + BC).
- 9) _____

<u>_</u> ՇБ ՇЬСЬ СБ					
ĀΒ	0	0	0	0	
ĀΒ	0	0	1	1	
ΑВ	0	0	0	1	
ΑB	0	0	0	1	

11) The look-ahead-carry adder is slower than the ripple-carry adder because it requires additional logic circuits.

12) A demux basically reverses the function of a mux.

13) A mux basically reverses the function of a demux.

Figure 4-1

14) For the circuit in Figure 4-1, X = 0 whenever A = 0, regardless of the levels applied to inputs B and C.

14)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

15) The largest single digit in the decimal number system is _

- A) 9 C) 1
- D) 10

D) 200

D) 100

16) In the decimal value 4256, the weight of the numeral 2 is ___ B) 10×2^2 A) 10³

17) How many binary digits are required to count to decimal 100? A) 7 C) 2

18) Decimal 42 is equivalent to binary __

18)

- A) 01000010
- B) 52
- C) 101010

C) 10²

D) 2A

19) In binary systems the sign of a number is indicated by				
A) placing a negative sign in front of the number				
B) using a 0 (zero) bit in front of negative numbersC) inverting the bits if the number is negative				
D) including a sign bit along with the magnitude bits				
20) When performing binary addition using the 2's complement method, an overflow can occur if				
A) both numbers have the same sign				
B) both numbers have the same magnitude				
C) one number is negative and the other is positive				
D) the second number is much greater than the first				
21) This is the truth table for a(n)				
A B X				
0 0 1				
A) OR gate B) AND gate C) NOR gate D) NAND gate				
22) Which of these truth tables represents the Exclusive-NOR gate?				
A B X A B X A B X A B X O O O O O O O O O O O O O O O O O O				
(A) (B) (C) (D)				
A) (A) B) (B) C) (C) D) (D)				
A) (A) B) (B) C) (C) D) (D)				
23) This is the timing diagram for a 2-input gate.				
,				
в Ј				
×				
A) AND B) NAND C) OR D) Exclusive-OR				
24) The difference between a PLA and a PAL is				
A) the PAL has more possible product terms than the PLA				
B) the PLA has a programmable OR plane and a programmable AND plane while the PAL only				
has a programmable AND plane C) the PAL has a programmable OR plane and a programmable AND plane while the PLA only				
has a programmable AND plane				
D) PALs and PLAs are the same thing.				

- 25) The expression for a 3-input NOR gate is _____
 - A) $\overline{A + B + C}$
- B) A/B/C
- C) $A \cdot B \cdot C$
- D) $\overline{A} + \overline{B} + \overline{C}$
- 26) Which of the examples below expresses the associative law of addition?
 - A) A + (B + C) = A + (BC)

B) A(BC) = (AB) + C

C) ABC = A + B + C

- D) A + (B + C) = (A + B) + C
- 27) Which of the examples below expresses the distributive law?
 - A) (A + B) + C = A + (B + C)

B) A(BC) = (AB) + C

C) A(B + C) = AB + AC

- D) A + (B + C) = AB + AC
- 28) Which of the following is a form of DeMorgan's theorem?
 - A) $\overline{X + Y} = \overline{X} + \overline{Y}$
- B) $\overline{XY} = \overline{X} + \overline{Y}$
- C) X(I) = X
- D) X + 0 = 0
- 29) Which of the following expressions is in the sum-of-products form?
 - A) (A + B)(C + D)
- B) (AB)(CD)
- C) AB + CD
- D) AB(CD)
- 29) _____

30)

25)

26)

27)

28)

- 30) Which of the following expressions is in the product-of sums form?
 - A) AB(CD)
- B) AB + CD
- C) (A + B)(C + D)
- D) (AB)(CD)
- 31) _____

31) Which of the circuits below is equivalent to the Reference Circuit?

- B) Figure (B)
- B B C A B A
 - C) Figure (C)
- D) Figure (D)

32) ____ 32) Which statement below best describes a Karnaugh map? A) The Karnaugh map eliminates the need for using NAND and NOR gates. B) A Karnaugh map can be used to replace Boolean rules. C) Variable complements can be eliminated by using Karnaugh maps. D) Karnaugh maps provide a cookbook approach to simplifying Boolean expressions. 33) Occasionally, a particular logic expression will be of no consequence in the operation of a circuit, 33) such as in a BCD-to-decimal converter. These result in ______ terms in the K-map and can be __ the resulting term. treated as either _____ or ____, in order to _____ A) duplicate, 1s, 0s, verify B) spurious, ANDs, ORs, eliminate C) don't care, 1s, 0s, simplify D) spurious, 1s, 0s, simplify 34) Which figure is the equivalent of the Reference Circuit? 34)

Figure 5-1

35) What type of logic circuit is represented by Figure 5-1?

A) XAND

B) XNOR

C) XOR

D) XNAND

Figure 5-2

- 36) A correct logic expression for Figure 5-2 is ____
- B) $X = (\overline{A}B)(AC + \overline{C}D)$

A) $X = AB\overline{C}(\overline{C}BD)$ C) $X = (\overline{A}B)(A\overline{C}CD)$

- D) $X = \overline{A}BC + A\overline{C}D$
- 37) The NAND gate is referred to as a "universal" gate, because it ______.

37)

36)

- A) is used in all the countries of the world
- B) can be found in almost all digital circuits
- C) can be used to build all the other types of gates
- D) was the first gate to be integrated
- 38) Which circuit is the sum-of-products equivalent of the Reference Circuit?

Figure 5-4

39) Which circuit in Figure 5-4 represents the NOR implementation of an OR gate?

39)

- A) Figure (A)
- B) Figure (B)
- C) Figure (C)
- D) Figure (D)
- 40) Which circuit in Figure 5-4 represents the NOR implementation of an AND gate?

40)

- A) Figure (A)
- B) Figure (B)
- C) Figure (C)
- D) Figure (D)
- 41) Which circuit in Figure 5-4 represents the NOR implementation of an inverter?

41) _____

- A) Figure (A)
- B) Figure (B)
- C) Figure (C)
- D) Figure (D)
- 42) The carry output of a half-adder circuit can be expressed as ______.

42) _____

- A) $C_{OLIT} = A + B$
- B) $C_{out} = A \oplus B$
- C) $C_{OLIT} = AB$
- D) None of these

43) The expression A \oplus B represents _____

43)

- A) The summing output of a half-adder
- C) The carry output of a full-adder
- B) The summing output of a full-adder
- D) The carry output of a half-adder

Figure 6-1

44) The symbol in Figure 6-1 represents a(n) _____

44)

- A) Half-adder
- B) Full-adder
- C) AND function
- D) PLD
- 45) Referring to the symbol in Figure 6-1, which set of outputs is very unlikely to ever occur?

45)

- A) $\Sigma = 1$, $C_{out} = 0$
- B) $\Sigma = 0$, $C_{Out} = 0$
- C) $\Sigma = 1$, $C_{out} = 1$
- D) $\Sigma = 0$, $C_{out} = 1$
- 46) What is the major difference between half-adders and full-adders?

46)

- A) Full-adders can handle double digit numbers.
 - B) Half-adders can only handle single digit numbers.
 - C) Full-adders have a carry input capability.
 - D) Nothing basically; full-adders are made up of two half-adders.

47)

47) Which of the following is correct for full-adders?

- A) Full-adders are used to make half-adders.
- B) Full-adders are limited to two inputs, since there are only two binary digits.
- C) Full-adders have the capability of directly adding decimal numbers.
- D) In a parallel full-adder, the first stage may be a half-adder.

- 48) The expression (A ⊕ B) ⊕ C_{in} represents _____
 - A) The carry output of a full-adder
 - C) The carry output of a half-adder
- B) The summing output of a half-adder
- D) The summing output of a full-adder
- 49) The expression AB + (A ⊕ B)Cin represents _____
 - A) The summing output of a full-adder
 - C) The carry output of a half-adder
- B) The carry output of a full-adder
- D) The summing output of a half-adder

Figure 6-2

- 50) Refer to the symbol in Figure 6-2. What are the output when A = 1, B = 1, $C_{in} = 1$?
- A) Σ =1, C_{out} = 1 B) Σ = 1, C_{out} = 0 C) Σ = 0, C_{out} = 1 D) Σ = 0, C_{out} = 0

Figure 6-3

- 51) The output of the decoder in Figure 6-3 will be 1 only when _____.
 - A) A = 0, B = 0, C = 0, D = 0

B) A = 1, B = 1, C = 1, D = 1

C) A = 1, B = 0, C = 1, D = 0

- D) A = 0, B = 1, C = 0, D = 1
- 52) The circuit below is most likely a _____.

52)

51)

48)

50)

- A) demultiplexer
- B) full-adder
- C) multiplexer
- D) comparator
- 53) A multiplexer with four select, or address, lines can select one of _____ inputs.
 - A) 7

B) 3

C) 15

8

D) 16

- B) multiplexer
- C) demultiplexer
- D) comparator